China Professional Food Machinery Parts Reduction High Torque Gearbox double worm gearbox

Product Description

Twin Screw Extruder Twin Screw Gearbox High Torque Gearbox

 

Twin Screw Gearbox Features

— High Speed
—Triaxiality parallel design improve B axis bearing capacity.
—Challengling manufacture and convenient assemply.Higher the cost.
—Modular structure design achieve 2 kinds of gearbox torque grade.

 

Twin Screw Gearbox Introduction

 

Twin Screw Gearbox adopting latest standard ISO1328,the precision of cylindrical gear of spherical involute, and combining our long term experience and specialty of twin-screw extruders, SHTDN gearboxes are meticulously designed with top advanced designing ideas in the world for co-orientated rotating twin-screw extruders, with entirely independent Intellectual Property Rights.
The gears are made of carburizing steel of high-strength alloy of good quality by carburizing and quenching for teeth, of which all the gear grinding processes are finished by imported gear grinding machines. Gear parameters are optimized and specially designed for the characteristics of twin screw extruders, reducing stress concentration on root of gear and improving gear surface conditions. We have improved gear intension of flexural fatigue, fatigue strength and ratio of wide diameter. We have also adopted the latest designing idea and technology of heating treatment for the structure of gears, thereby ensured gears from uniformity of precision and strength.

 

SHTDN High Torque Gearbox Data Table

 

SHTDN Gearbox Power&Torque Table

Model

CD(MM)

Torque Grade(T/A3)

RPM 300r/min

RPM 400r/min

RPM 500r/min

RPM 600r/min

RPM 800r/min

RPM 900r/min

SHTD20N

18

<13

7.5kw

11kw

SHTD25N

22

<13

11kw

15kw

18.5kw

22kw

SHTD30N

26

<13

22kw

30kw

37kw

SHTD35N

30

<13

18.5kw

22kw

30kw

37kw

50kw

60kw

SHTD40N

34.5

<13

30kw

45kw

55kw

65kw

90kw

90kw

SHTD50N

42

<13

55kw

75kw

90kw

110kw

132kw

160kw

SHTD52N

43

<13

55kw

75kw

90kw

110kw

132kw

160kw

SHTD58N

48

<13

90kw

110kw

132kw

160kw

220kw

250kw

SHTD65N

52

<13

110kw

132kw

160kw

220kw

280kw

315kw

SHTD75N

60

<13

160kw

220kw

250kw

315kw

450kw

500kw

SHTD85N

67.8

<13

220kw

315kw

400kw

500kw

600kw

650kw

SHTD95N

78

<13

350kw

450kw

550kw

650kw

900kw

1000kw

SHTD110N

92

<13

560kw

710kw

900kw

1000kw

SHTD125N

100

<13

800kw

1000kw

1250kw

1400kw

SHTD135N

110

<13

1000kw

1400kw

1600kw

2000kw

SHTD150N

120

<13

1320kw

1750kw

 

 

 

 

 

Production Process
 

Packing&Delivery
 

Packing Details: According to your order quantity packaging,shipping wooden boxes,air carton.

Delivery Details: 5-60days after order.

1.Rust-proof oil processing,

   Prevent rust in transit.

2.Oiled paper packages,

   Prevent oil dry.

3.Bubble wrap package,

   Prevent collosions.

4.Special foam packaging. 5.Packing 6.Sealing

Our Service

 

24-hour Hotline

 

No matter when and where

to call we can find our service to you.

 

 

Pre-sales Consultation

 

We have 5 sales people online,

and whether you have any question

can be solved through online

communication,welcome your consultation.

After-sales Services

 

Receive products have any

questions about the product,

can look for us,we will help

you deal with the the first time,to your satisfaction.

 

All ZT keep pay attention to every step of the details,We are looking CZPT to the forge ahead together with you!

 

 

FAQ

 

How long does it take to get my products since I paid for them?

—According to yout order quantity,we will give you a reasonable delivery date.

 

Can I get the warranty of 1 year for free?

—If you need the warranty,you should pay for it.If not,do not worry ,we have confidence in our products.

 

How is your after-sale service?

—You will get our help in time as long as you find something wrong about our produces.Believe us,you deserve the best.

 

How long will your product last?

—I am sorry that I can not accurately answer your question,which is quite different from your operation time,materials and materials.

Application: Machinery
Function: Speed Reduction
Layout: Double Drive Gearbox
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Three-Step
Customization:
Available

|

What is a worm gear reducer gearbox?

A worm gear reducer gearbox is a mechanical device that uses a worm gear and a worm to reduce the speed of a rotating shaft. The gear reducer gearbox can increase the output torque of the engine according to the gear ratio. This type of gear reducer gearbox is characterized by its flexibility and compact size. It also increases the strength and efficiency of the drive.
worm reducer

Hollow shaft worm gear reducer gearbox

The hollow shaft worm gear reducer gearbox is an additional output shaft connecting various motors and other gearboxes. They can be installed horizontally or vertically. Depending on size and scale, they can be used with gearboxes from 4GN to 5GX.
Worm gear reducer gearboxes are usually used in combination with helical gear reducer gearboxes. The latter is mounted on the input side of the worm gear reducer gearbox and is a great way to reduce the speed of high output motors. The gear reducer gearbox has high efficiency, low speed operation, low noise, low vibration and low energy consumption.
Worm gear reducer gearboxes are made of hard steel or non-ferrous metals, increasing their efficiency. However, gears are not indestructible, and failure to keep running can cause the gear oil to rust or emulsify. This is due to moisture condensation that occurs during the operation and shutdown of the reducer gearbox. The assembly process and quality of the bearing are important factors to prevent condensation.
Hollow shaft worm gear reducer gearboxes can be used in a variety of applications. They are commonly used in machine tools, variable speed drives and automotive applications. However, they are not suitable for continuous operation. If you plan to use a hollow shaft worm gear reducer gearbox, be sure to choose the correct one according to your requirements.

Double throat worm gear

Worm gear reducer gearboxes use a worm gear as the input gear. An electric motor or sprocket drives the worm, which is supported by anti-friction roller bearings. Worm gears are prone to wear due to the high friction in the gear teeth. This leads to corrosion of the confinement surfaces of the gears.
The pitch diameter and working depth of the worm gear are important. The pitch circle diameter is the diameter of the imaginary circle in which the worm and the gear mesh. Working depth is the maximum amount of worm thread that extends into the backlash. Throat diameter is the diameter of the circle at the lowest point of the worm gear face.
When the friction angle between the worm and the gear exceeds the lead angle of the worm, the worm gear is self-locking. This feature is useful for lifting equipment, but may be detrimental to systems that require reverse sensitivity. In these systems, the self-locking ability of the gears is a key limitation.
The double throat worm gear provides the tightest connection between the worm and the gear. The worm gear must be installed correctly to ensure maximum efficiency. One way to install the worm gear assembly is through a keyway. The keyway prevents the shaft from rotating, which is critical for transmitting torque. Then attach the gear to the hub using the set screw.
The axial and circumferential pitch of the worm gear should match the pitch diameter of the larger gear. Single-throat worm gears are single-threaded, and double-throat worm gears are double-throat. A single thread design advances one tooth, while a double thread design advances two teeth. The number of threads should match the number of mating gears.
worm reducer

Self-locking function

One of the most prominent features of a worm reducer gearbox is its self-locking function, which prevents the input and output shafts from being interchanged. The self-locking function is ideal for industrial applications where large gear reduction ratios are required without enlarging the gear box.
The self-locking function of a worm reducer gearbox can be achieved by choosing the right type of worm gear. However, it should be noted that this feature is not available in all types of worm gear reducer gearboxes. Worm gears are self-locking only when a specific speed ratio is reached. When the speed ratio is too small, the self-locking function will not work effectively.
Self-locking status of a worm reducer gearbox is determined by the lead, pressure, and coefficient of friction. In the early twentieth century, cars had a tendency to pull the steering toward the side with a flat tire. A worm drive reduced this tendency by reducing frictional forces and transmitting steering force to the wheel, which aids in steering and reduces wear and tear.
A self-locking worm reducer gearbox is a simple-machine with low mechanical efficiency. It is self-locking when the work at one end is greater than the work at the other. If the mechanical efficiency of a worm reducer gearbox is less than 50%, the friction will result in losses. In addition, the self-locking function is not applicable when the drive is reversed. This characteristic makes self-locking worm gears ideal for hoisting and lowering applications.
Another feature of a worm reducer gearbox is its ability to reduce axially. Worm gears can be double-lead or single-lead, and it is possible to adjust their backlash to compensate for tooth wear.

Heat generated by worm gears

Worm gears generate considerable amounts of heat. It is essential to reduce this heat to improve the performance of the gears. This heat can be mitigated by designing the worms with smoother surfaces. In general, the speed at which worm gears mesh should be in the range of 20 to 24 rms.
There are many approaches for calculating worm gear efficiency. However, no other approach uses an automatic approach to building the thermal network. The other methods either abstractly investigate the gearbox as an isothermal system or build the TNM statically. This paper describes a new method for automatically calculating heat balance and efficiency for worm gears.
Heat generated by worm gears is a significant source of power loss. Worm gears are typically characterized by high sliding speeds in their tooth contacts, which causes high frictional heat and increased thermal stresses. As a result, accurate calculations are necessary to ensure optimal operation. In order to determine the efficiency of a gearbox system, manufacturers often use the simulation program WTplus to calculate heat loss and efficiency. The heat balance calculation is achieved by adding the no-load and load-dependent power losses of the gearbox.
Worm gears require a special type of lubricant. A synthetic oil that is non-magnetic and has a low friction coefficient is used. However, the oil is only one of the options for lubricating worm gears. In order to extend the life of worm gears, you should also consider adding a natural additive to the lubricant.
Worm gears can have a very high reduction ratio. They can achieve massive reductions with little effort, compared to conventional gearsets which require multiple reductions. Worm gears also have fewer moving parts and places for failure than conventional gears. One disadvantage of worm gears is that they are not reversible, which limits their efficiency.
worm reducer

Size of worm gear reducer gearbox

Worm gear reducer gearboxes can be used to decrease the speed of a rotating shaft. They are usually designed with two shafts at right angles. The worm wheel acts as both the pinion and rack. The central cross section forms the boundary between the advancing and receding sides of the worm gear.
The output gear of a worm gear reducer gearbox has a small diameter compared to the input gear. This allows for low-speed operation while producing a high-torque output. This makes worm gear reducer gearboxes great for space-saving applications. They also have low initial costs.
Worm gear reducer gearboxes are one of the most popular types of speed reducer gearboxes. They can be small and powerful and are often used in power transmission systems. These units can be used in elevators, conveyor belts, security gates, and medical equipment. Worm gearing is often found in small and large sized machines.
Worm gears can also be adjusted. A dual-lead worm gear has a different lead on the left and right tooth surfaces. This allows for axial movement of the worm and can also be adjusted to reduce backlash. A backlash adjustment may be necessary as the worm wears down. In some cases, this backlash can be adjusted by adjusting the center distance between the worm gear.
The size of worm gear reducer gearbox depends on its function. For example, if the worm gear is used to reduce the speed of an automobile, it should be a model that can be installed in a small car.

China Professional Food Machinery Parts Reduction High Torque Gearbox   double worm gearboxChina Professional Food Machinery Parts Reduction High Torque Gearbox   double worm gearbox
editor by CX

2023-04-24

Recent Posts